50行代码实现人脸识别检测
现在的人脸识别技术已经得到了非常广泛的应用,支付领域、身份验证、美颜相机里都有它的应用。下面小编给大家带来了基于50行Python代码实现人脸检测功能,一起看看吧。
现在的人脸识别技术已经得到了非常广泛的应用,支付领域、身份验证、美颜相机里都有它的应用。用iPhone的同学们应该对下面的功能比较熟习。
iPhone的照片中有一个“人物”的功能,能够将照片里的人脸识别出来并分类,背后的原理也是人脸识别技术。
这篇文章主要详情怎么用Python实现人脸检测。人脸检测是人脸识别的基础。人脸检测的目的是识别出照片里的人脸并定位面部特征点,人脸识别是在人脸检测的基础上进一步告诉你这个人是谁。
好了,详情就到这里。接下来,开始准备我们的环境。
准备工作
本文的人脸检测基于dlib,dlib依赖Boost和cmake,所以首先需要安装这些包,以Ubuntu为例:
$ sudo apt-get install build-essential cmake
$ sudo apt-get install libgtk-3-dev
$ sudo apt-get install libboost-all-dev
我们的程序中还用到numpy,opencv,所以也需要安装这些库:
$ pip install numpy
$ pip install scipy
$ pip install opencv-python
$ pip install dlib
人脸检测基于事前训练好的模型数据,从这里可以下到模型数据
http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2
下载到本地路径后解压,记下解压后的文件路径,程序中会用到。
dlib的人脸特征点
上面下载的模型数据是用来预计人脸上68个特征点(x, y)的坐标位置,这68个坐标点的位置如下图所示
我们的程序将包含两个步骤:
第一步,在照片中检测人脸的区域
第二部,在检测到的人脸区域中,进一步检测器官(眼睛、鼻子、嘴巴、下巴、眉毛)
人脸检测代码
我们先来定义几个工具函数:
defrect_to_bb(rect):
??x =rect.left()
??y =rect.top()
??w =rect.right() -x
??h =rect.bottom() -y??
??return(x, y, w, h)
这个函数里的rect是dlib脸部区域检测的输出。这里将rect转换成一个序列,序列的内容是矩形区域的边界信息。
defshape_to_np(shape, dtype=”int”):
??coords =np.zeros((68, 2), dtype=dtype)??
??fori inrange(0, 68):
??????coords[i] =(shape.part(i).x, shape.part(i).y)??
??returncoords
这个函数里的shape是dlib脸部特征检测的输出,一个shape里包含了前面说到的脸部特征的68个点。这个函数将shape转换成Numpy array,为方便后续解决。
defresize(image, width=1200):
??r =width *1.0/image.shape[1]
??dim =(width, int(image.shape[0] *r))
??resized =cv2.resize(image, dim, interpolation=cv2.INTER_AREA)??
??returnresized
这个函数里的image就是我们要检测的图片。在人脸检测程序的最后,我们会显示检测的结果图片来验证,这里做resize是为了避免图片过大,超出屏幕范围。
接下来,开始我们的主程序部分
importsys importnumpy as np
importdlib importcv2
iflen(sys.argv) < 2:??
??print”Usage: %s <image file>”%sys.argv[0]
??sys.exit(1)
image_file =sys.argv[1]
detector =dlib.get_frontal_face_detector()
predictor =dlib.shape_predictor(“shape_predictor_68_face_landmarks.dat”)
我们从sys.argv[1]参数中读取要检测人脸的图片,接下来初始化人脸区域检测的detector和人脸特征检测的predictor。shape_predictor中的参数就是我们之前解压后的文件的路径。
image =cv2.imread(image_file)
image =resize(image, width=1200)
gray =cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
rects =detector(gray, 1)
在检测特征区域前,我们先要检测人脸区域。这段代码调用opencv加载图片,resize到合适的大小,转成灰度图,最后用detector检测脸部区域。由于一张照片可能包含多张脸,所以这里得到的是一个包含多张脸的信息的数组rects。
for(i, rect) inenumerate(rects):
??shape =predictor(gray, rect)
??shape =shape_to_np(shape)
??(x, y, w, h) =rect_to_bb(rect)
??cv2.rectangle(image, (x, y), (x +w, y +h), (0, 255, 0), 2)
??cv2.putText(image, “Face #{}”.format(i +1), (x -10, y -10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)??
for(x, y) inshape:
??????cv2.circle(image, (x, y), 2, (0, 0, 255), -1)
cv2.imshow(“Output”, image)
cv2.waitKey(0)
对于每一张检测到的脸,我们进一步检测脸部的特征(鼻子、眼睛、眉毛等)。对于脸部区域,我们用绿色的框在照片上标出;对于脸部特征,我们用红色的点标出来。
最后我们把加了检测标识的照片显示出来,waitKey(0)表示按任意键可退出程序。
以上是我们程序的一律
测试
接下来是令人兴奋的时刻,检验我们结果的时刻到来了。
下面是原图
下面是程序识别的结果
可以看到脸部区域被绿色的长方形框起来了,脸上的特征(鼻子,眼睛等)被红色点点标识出来了。
是不是很简单呢。
总结
以上所述是小编给大家详情的50行Python代码实现人脸检测功能,希望对大家有所帮助,假如大家有任何问题请给我留言,小编会及时回复大家的。
公众号:Python大咖那些事
关注领取更多资料,每日升级Python相关技术文!
Python开发学习交流群:705673780,一起学习交流哦
1. 本站所有资源来源于用户上传和网络,如有侵权请邮件联系站长!
2. 分享目的仅供大家学习和交流,您必须在下载后24小时内删除!
3. 不得使用于非法商业用途,不得违反国家法律。否则后果自负!
4. 本站提供的源码、模板、插件等等其他资源,都不包含技术服务请大家谅解!
5. 如有链接无法下载、失效或广告,请联系管理员处理!
6. 本站资源售价只是摆设,本站源码仅提供给会员学习使用!
7. 如遇到加密压缩包,请使用360解压,如遇到无法解压的请联系管理员
开心源码网 » 50行代码实现人脸识别检测