H5游戏开发:贪吃蛇
贪吃蛇的经典玩法有两种:
积分闯关
一吃究竟
第一种是小编小时候在掌上游戏机最先体验到的(不小心暴露了年龄),具体玩法是蛇吃完肯定数量的食物后就通关,通关后速度会加快;第二种是诺基亚在1997年在其自家手机上安装的游戏,它的玩法是吃到没食物为止。笔者要实现的就是第二种玩法。
MVC设计模式
基于贪吃蛇的经典,笔者在实现它时也用一种经典的设计模型:MVC(即:Model – View – Control)。游戏的各种状态与数据结构由 Model 来管理;View 使用于显示 Model 的变化;使用户与游戏的交互由 Control 完成(Control 提供各种游戏API接口)。
Model 是游戏的核心也是本文的主要内容;View 会涉及到部分性可以问题;Control 负责业务逻辑。 这样设计的好处是: Model完全独立,View 是 Model 的状态机,Model 与 View 都由 Control 来驱动。
Model
看一张贪吃蛇的经典图片。
web前台/H5/javascript学习群:250777811
欢迎关注此公众号→【web前台EDU】跟大佬一起学前台!欢迎大家留言探讨一起转发
贪吃蛇有四个关键的参加对象:
蛇(snake)
食物(food)
墙(bounds)
舞台(zone)
舞台是一个
m * n
的矩阵(二维数组),矩阵的索引边界是舞台的墙,矩阵上的成员使用于标记食物和蛇的位置。
空舞台如下:
[[0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0],]
食物(F)和蛇(S)出现在舞台上:
[[0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0],[0,0,F,0,0,0,0,0,0,0],[0,0,0,S,S,S,S,0,0,0],[0,0,0,0,0,0,S,0,0,0],[0,0,0,0,S,S,S,0,0,0],[0,0,0,0,S,0,0,0,0,0],[0,0,0,0,S,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0],]
因为操作二维数组不如一维数组方便,所以笔者用的是一维数组, 如下:
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,F,0,0,0,0,0,0,0,0,0,0,S,S,S,S,0,0,0,0,0,0,0,0,0,S,0,0,0,0,0,0,0,S,S,S,0,0,0,0,0,0,0,S,0,0,0,0,0,0,0,0,0,S,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,]
舞台矩阵上蛇与食物只是舞台对二者的映射,它们彼此都有独立的数据结构:
蛇是一串坐标索引链表;
食物是一个指向舞台坐标的索引值。
蛇的活动
蛇的活动有三种,如下:
移动(move)
吃食(eat)
碰撞(collision)
移动
蛇在移动时,内部发生了什么变化?
蛇链表在一次移动过程中做了两件事:向表头插入一个新节点,同时剔除表尾一个旧节点。使用一个数组来代表蛇链表,那么蛇的移动就是以下的伪代码:
function move(next) {snake.pop() & snake.unshift(next);}
数组作为蛇链表合适吗? 这是笔者最开始思考的问题,毕竟数组的
unshift & pop
能无缝表示蛇的移动。不过,方便不代表性可以好,
unshift
向数组插入元素的时间复杂度是 O(n),
pop
剔除数组尾元素的时间复杂度是 O(1)。
蛇的移动是一个高频率的动作,假如一次动作的算法复杂度为 O(n) 并且蛇的长度比较大,那么游戏的性可以会有问题。笔者想实现的贪吃蛇理论上讲是一条长蛇,所以笔者在本文章的回复是 —— 数组不适合作为蛇链表。
蛇链表必需是真正的链表结构。 链表删除或者插入一个节点的时间复杂度为O(1),使用链表作为蛇链表的数据结构可以提高游戏的性可以。javascript 没有现成的链表结构,笔者写了一个叫 Chain 的链表类,
Chain
提供了
unshfit & pop
。以下伪代码是创立一条蛇链表:
let snake = new Chain();
吃食 & 碰撞
「吃食」与「碰撞」区别在于吃食撞上了「食物」,碰撞撞上了「墙」。笔者认为「吃食」与「碰撞」属于蛇一次「移动」的三个可可以结果的两个分支。蛇移动的三个可可以结果是:「前进」、「吃食」和「碰撞」。
回头看一下蛇移动的伪代码:
function move(next) {snake.pop() & snake.unshift(next);}
代码中的
next
表示蛇头即将进入的格子的索引值,只有当这个格子是
0
时蛇才可以「前进」,当这个格子是
S
表示「碰撞」自己,当这个格子是
F
表示吃食。
如同少了撞墙? 笔者在设计过程中,并没有把墙设计在舞台的矩阵中,而是通过索引出界的方式来表示撞墙。简单地说就是
next === -1
时表示出界和撞墙。
以下伪代码表示蛇的整上活动过程:
// B 表示撞墙let cell = -1 === next ? B : zone[next];switch(cell) { // 吃食case F: eat(); break; // 撞到自己case S: collision(S); break; // 撞墙case B: collision(B): break; // 前进default: move;}
随机投食
随机投食是指随机筛选舞台的一个索引值使用于映射食物的位置。这似乎很简单,能直接这样写:
// 伪代码food = Math.random(zone.length) >> 0;
假如考虑到投食的前提 —— 不与蛇身重叠,你会发现上面的随机代码并不可以保证投食位置不与蛇身重叠。因为这个算法的安全性带有赌博性质,且把它称作「赌博算法」。为了保证投食的安全性,笔者把算法扩展了一下:
// 伪代码function feed() { let index = Math.random(zone.length) >> 0; // 当前位置能否被占使用return zone[index] === S ? feed() : index;}food = feed();
上面的代码尽管在理论上能保证投食的绝对安全,不过笔者把这个算法称作「不要命的赌徒算法」,由于上面的算法有致命的BUG —— 超长递归 or 死循环。
为理解决上面的致命问题,笔者设计了下面的算法来做随机投食:
// 伪代码function feed() { // 未被占使用的空格数let len = zone.length - snake.length; // 无法投食if(len === 0) return ; // zone的索引let index = 0, // 空格计数器count = 0, // 第 rnd 个空格子是最终要投食的位置rnd = Math.random() * count >> 0 + 1; // 累计空格数while(count !== rnd) { // 当前格子为空,count总数增一zone[index++] === 0 && ++count; } return index - 1;}food = feed();
这个算法的平均复杂度为 O(n/2)。因为投食是一个低频操作,所以 O(n/2)的复杂度并不会带来任何性可以问题。不过,笔者觉得这个算法的复杂度还是有点高了。回头看一下最开始的「赌博算法」,尽管「赌博算法」很不靠谱,但是它有一个优势 —— 时间复杂度为 O(1)。
「赌博算法」的靠谱概率 = (zone.length – snake.length) / zone.length。
snake.length
是一个动态值,它的变化范围是:
0 ~ zone.length
。推导出「赌博算法」的平均靠谱概率是:
「赌博算法」平均靠谱概率 = 50%
看来「赌博算法」还是能利使用一下的。于是笔者重新设计了一个算法:
// 伪代码function bet() { let rnd = Math.random() * zone.length >> 0; return zone[rnd] === 0 ? rnd : -1;}function feed() { ...}food = bet();if(food === -1) food = feed();
新算法的平均复杂度能有效地降低到 O(n/4),人生有时候需要点运气 : )。
View
在 View 能根据喜好选择一款游戏渲染引擎,笔者在 View 层选择了
PIXI
作为游戏游戏渲染引擎。
View 的任务主要有两个:
绘制游戏的界面;
渲染 Model 里的各种数据结构
也就是说 View 是用渲染引擎复原设计稿的过程。本文的目的是详情「贪吃蛇」的实现思路,如何用一个渲染引擎不是本文探讨的范畴,笔者想详情的是:「如何提高渲染的效率」。
在 View 中显示 Model 的蛇能简单地如以下伪代码:
// 清空 View 上的蛇view.snake.clean();model.snake.forEach( (node) => { // 创立 View 上的蛇节点let viewNode = createViewNode(node); // 并合一条新蛇 view.snake.push(viewNode); });
上面代码的时间复杂度是 O(n)。上面详情过蛇的移动是一个高频的活动,我们要尽量避免高频率地运行 O(n) 的代码。来分析蛇的三种活动:「移动」,「吃食」,「碰撞」。
首先,Model 发生了「碰撞」,View 应该是直接暂停渲染 Model 里的状态,游戏处在死亡状态,接下来的事由 Control 解决。
Model 中的蛇(链表)在一次「移动」过程中做了两件事:向表头插入一个新节点,同时剔除表尾一个旧节点;蛇(链表)在一次「吃食」过程中只做一件事:向表头插入一个新节点。
假如在 View 中对 Model 的蛇链表做差异化检查,View 只增量升级差异部分的话,算法的时间复杂度就可降低至 O(1) ~ O(2) 。以下是优化后的伪代码:
let snakeA = model.snake, snakeB = view.snake;// 增量升级尾部while(snakeB.length <= snakeA.length) { headA = snakeA.next(); // 头节点匹配if(headA.data === headB.data) break; // 不匹配else { // 向snakeB插入头节点if(snakeA.HEAD === headA.index) { snakeB.unshift(headA.data); } // 向snakeB插入第二个节点else snakeB.insertAfter(0, headA.data); }}// 增量升级头部 let tailA = snakeA.last(), tailB;while(snakeB.length !== 0) { tailB = snakeB.last(); // 尾节点匹配if(tailA.data === tailB.data) break; // 不匹配else snakeB.pop();}
Control
Control 主要做 3 件事:
游戏与使用户的互动
驱动 Model
同步 View 与 Model
「游戏与使用户的互动」是指向外提供游戏过程需要用到的 APIs 与 各类事件。笔者规划的 APIs 如下:
name | type | deltail |
---|---|---|
init | method | 初始化游戏 |
start | method | 开始游戏 |
restart | method | 重新开始游戏 |
pause | method | 暂停 |
resume | method | 恢复 |
turn | method | 控制蛇的转向。如:turn(“left”) |
destroy | method | 销毁游戏 |
speed | property | 蛇的移动速度 |
事件如下:
name | detail |
---|---|
countdown | 倒时计 |
eat | 吃到食物 |
before-eat | 吃到食物前触发 |
gameover | 游戏结束 |
事件统一挂载在游戏实例下的
event
对象下。
snake.event.on("countdown", (time) => console.log("剩余时间:", time));
「驱动 Model 」只做一件事 —— 将 Model 的蛇的方向升级为使用户指定的方向。 「同步 View 与 Model 」也比较简单,检查 Model 能否有升级,假如有升级通知 View 升级游戏界面。
更多IT精彩推荐:
人人都要学的IT小技巧:http://xue.ujiuye.com/zt/renrenxue/
1. 本站所有资源来源于用户上传和网络,如有侵权请邮件联系站长!
2. 分享目的仅供大家学习和交流,您必须在下载后24小时内删除!
3. 不得使用于非法商业用途,不得违反国家法律。否则后果自负!
4. 本站提供的源码、模板、插件等等其他资源,都不包含技术服务请大家谅解!
5. 如有链接无法下载、失效或广告,请联系管理员处理!
6. 本站资源售价只是摆设,本站源码仅提供给会员学习使用!
7. 如遇到加密压缩包,请使用360解压,如遇到无法解压的请联系管理员
开心源码网 » H5游戏开发:贪吃蛇